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Optimal control problems for a plane two-link pendulum whose links are homogeneous thin rods (material segments) are solved. 
The control variable is either the angular velocity of rotation of the second link relative to the first (Problem 1) or the angle 
between the two links (Problem 2). It is assumed that at the starting time the following parameter values are given: the angle of 
deviation of the first link (assumed to be positive), the angle between the links, and the angular momentum of the system relative 
to the suspension point (which is assumed to be zero). It is required to minimize (maximize in absolute value) the angle of 
deviation of the first link from the vertical at the time the angular momentum first becomes zero after the pendulum is set in 
motion. In Problem 1 a certain restriction is imposed on the absolute value of the control function. The Pontryagin maximum 
principle is used to show that the optimal control consists of alternating non-singular and singular portions. The behaviour 
of the optimal control is investigated as a function of the maximum admissible angular velocity of relative rotation of the links. 
Problem 2 is solved with no restrictions, using methods of the calculus of variations. A boundary-value problem also arises here, 
which is equivalent to the boundary-value problem of the maximum principle for the case in which the control occurs on 
the right-hand sides of the differential equations of motion together with its derivatives and is not subject to any restrictions. 
A numerical algorithm is proposed to solve the boundary-value problem. An example is presented in which an optimal control 
is constructed for a pendulum with particular parameters. It is shown that in optimal motion the angle between the links 
varies continuously everywhere, except at the initial and final instants of the control process, where the angle varies by a 
jump. © 2000 Elsevier Science Ltd. All rights reserved. 

One reason why it is difficult to investigate oscillatory mechanical systems with several degrees of freedom 
effectively is the large number of dimensions of the corresponding system of differential equations of 
motion. The dimensionality of the system of equations may be reduced if one of the phase coordinates 
is chosen as a control. When that is done, however, new mechanical effects and new forms of optimal 
control, not present in the original system, may appear. 

In this paper, taking as an example a plane two-link physical pendulum, we present the results of a 
complex investigation of the initial system of equations of motion and a corresponding system of 
equations of lower order. The first link of the pendulum may oscillate about a fixed point, while the 
second oscillates about the first. Only oscillatory motions will be considered, q~vo optimal control 
problems will be formulated and solved, both relating to the maximum deviation of the first link from 
the vertical over one half-cycle of the pendulum's swing. In Problem 1 the control function is the angular 
velocity of rotation of the second link relative to the first. It is assumed that the control in bounded. 
The problem has a unique solution. The optimal control function contains alternating portions of non- 
singular and singular control. 

In Problem 2, the control is the angle of rotation of the second link relative to the first. This 
problem is a limiting case of Problem 1 when the angular velocity of the second link may take 
absolute values as large as desired. It is shown that the problem is multi-extremal and has an 
infinite set of solutions. New effects, characteristic of Problem 2 only, are demonstrated. The 
process of continuous transition from the solution of the first problem to a solution of the second is 
described. 

The algorithms developed to solve the boundary-value problems are extensions of earlier results [4]. 
The problem of the swinging if a two-link pendulum is related to the problem of optimizing the sportive 

motions of an athlete on a crossbar. The problem is also of interest in theoretical mechanics. Analysis 
of the results obtained improves our understanding of the problem of investigating and constructing 
optimal oscillatory modes of motion in mechanical systems. 
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1. O P T I M A L  C O N T R O L  OF THE A N G U L A R  V E L O C I T Y  OF THE 
S E C O N D  L I N K  OF THE P E N D U L U M  

Mathematical model of the motion. Consider a plane two-link pendulum whose links are homogeneous 
rods of length la and lz and mass ml and mz (Fig. 1). At the suspension point 0 of the first link and 
between the links there are single degree-of-freedom joints. The angle of deviation of the first link from 
the vertical is denoted by tp 1 and that of the second link from the continuation of the first by tpz. The 
angles are measured counterclockwise. 

The angular momentum K of the two-link pendulum about the point O may be written in the form 

g = A((P2 )(01 + B(~°2)(°2 (1.1) 

where 

A(q)2) = a 0 + a  I cosq)2, B(q)2) = b 0 +bj cosq) 2 (1.2) 

I I 
_ t2+m21~, al m2111~ ' bo = 1 2 bt lm21t12 ao ..~mlll-2 +.~rrt2, 2 = ~m212, = 

As control function we choose the angular velocity of rotation of the second link of the pendulum 
relative to the first: u = q~2(t). The control is assumed to be bounded 

lul < c (1.3) 

The equations of motion in a time interval 0 ~< t ~< T, in terms of the variables (K, qOl, ~2), are 

R = L(q01,~2), (0! = ~ K  -C(q°2) u, (02 '= u (1.4) 
A(q02) 

where 

1 ! k t = -~rnlltg - rn21lg, k2 = --~m212g 

B(cP2 ) 
L(qol,qo2) = kl sintpl +k2 sin(% + qo2), C(tO2) = A(tP2) 

The initial conditions are assumed to be given: 

K(0)=0,  % ( 0 ) = % 0 > 0 ,  ~P2(0)=CP2o (1.5) 

Formulation ofproblem 1. For the equation system (1.4) with initial conditions (1.5), it is required to 
construct a control u(t) which satisfies condition (1.3) and, at the time t = Twhen the angular momentum 
first vanishes for t > 0: 

Fj = K(T) = 0 (1.6) 

~ ,  l t 
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I 

\ 

Fig. 1. 
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guarantees that the first link will deviate from the vertical by the maximum amount: 

F(} = -tpl(T) ---> max (1.7) 

It is assumed that the pendulum's motion in its first swinging half-cycle is oscillatory, and at some 
t = T > 0 the angular momentum vanishes at an angle ~I(T) e (-~r, 0). 

Necessary conditions for an extremum. The  necessary conditions for the existence of an extremum in 
problem (1.1)-(1.7), in the form of the Pontryagin maximum principle [5], are as follows ((hi(t), h2(t), 
h3(t )} is the vector of conjugate variables): 

= - - -  

~'3 = -k2 cos(tPl + tP2)~'l 

~,2(T) =-1 ,  ~,3(T) = 0, 

~L2 ) ,  Jg 2 = - L ( ( p I , q ) 2 ) ; L  I (1.8) 
A(tP2 

a I K sin (1)2 ;L 2 + u .k°j sin q)2 ~,2 (kol = albo - aobl ) 
[A(q~2)] 2 [A(q)2)] 2 

H = H 0 + Hlu ---> max, H(T)  = 0 (1.9) 

where 

K 
H0 = ~qL(qh ,q)2) + Z'2 A - ~ 2  ) , HI = ~'3 - ~'2C((P2) (1.10) 

Method o f  investigating the problem and results o f  computations. The  problem is solved in two stages. In 
the first stage, the structure of the optimal control law is determined by using a modified method of successive 
linearization and methods for qualitative analysis of the equations of motion and optimality conditions 
[4]. It is established that the optimal control function, when c > 2~r s -1, includes three portions of the motion 
with boundary control u(t) = - c  and two portions of motion with intemal (singular) control (Fig. 2a). 

In the second stage, a numerical solution of the boundary-value problem of the maximum principle 
is constructed using the following algorithm. 

1. Fix a time t 1 and, in the time interval 0 ~ t ~< ti, integrate the basic system of equations (1.4) with 
control u(t) = - c .  

2. At t = ti, define h2(q) = -1 .  Using the conditions Hi(t1) = 0 (see (1.10)) and H i ( q )  = O, find 
h3(tl) and hi(t1), where 

aIKsintp2 (1.11) HI = ~'l C(q)2 )M((Pl, q)2) - ~'lk2 cos((Pl -I- (1)2) - ~'2 [A(q)2 )]2" 

M(tPl ,~2) = kl c°s~l +k2 cos(~l +(1)2) 

3. Vary tl and successively implement steps 1 ° and 2 ° until the condition Ho(tl) = 0 (see (1.10)) is met. 
4. Fix a time t 2, and, in the interval t i ~< t ~< t2, integrate the basic system (1.4) together with the 

conjugate system (1.8) with a singular control [6] computed from the condition 

fiI] = D2u + D. = 0 (1.12) 

where 

. . . .  (L2cosg l  /O~lsin~ol~ al~.2sin~P2 
D, =-Iqc;(rp2) L A ~ 2 )  ~" A(~2) ) -  [A(tp2)] 2 (kisin{pt +k2sin(~' +cP2))+ 

( cos(,p + s'n('p, a I K~q sin tp 2 M(tp~, tp 2) - k 2 ~- (C(q) 2) - I) 
q [A(q)2)]2 A(q~ 2) A(tp 2) 

~'z sin tp_....__~ 2 
/92 - [A(cP2 )]2 koj M(qh' tP2) + ~'t kt [C(tP2 )]2 sin tpj + 

+Ljk 2 sin(tpj + tP2)C(tP2)(C(tP2 ) -  I) 2 - ~ ( a  t + a  t sin 2 tp2 + a  0 costP2) 
t q~2 
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5. Fix a time, t 3 and, in the interval t2 <~ t ~< t3, integrate the basic and conjugate systems with control 
u ( t )  = - c .  

6. Vary the times t2, t3 and successively implement steps 4 ° and 5 ° until the conditions Hi(t3)  = 0, 
Hi(t3) = 0 are met. 

7. Fix a time t4 and, in interval t3 ~< t ~< t4, integrate the basic and conjugate systems with a singular 
control computed from condition (1.12). 

8. Fix a time T and, in the interval t 4 <~ t ~< T, integrate the basic and conjugate systems with the 
control u(t) = - c .  

9. Vary the times t4, Tand successively implement steps 7* and 8 ° until condition (1.6) and the second 
condition of (1.9) are met. 

10. Integrate the conjugate system in reverse time in the interval 0 ~< t ~< tl, with the boundary 
conditions computed at step 2 and the control u ( t )  = - c .  Construct the vector function of conjugate 
variables {kl(t  ), k2(t), h3(t)} over the entire portion of the motion, 0 ~< t ~< T. 

11. For the interval 0 ~< t ~< T, verify that the last two conditions of (1.9) and Kelly's condition 
D2 > 0 hold for the singular controls. 

Note that the last condition of (1.9) will be satisfied by virtue of step 2 °, but Kelly's condition and 
the multimate condition of (1.9) will hold only provided that the structure of the optimal control law 
was correctly established at the first stage of the investigation by the direct method of [4]. The first 
condition of (1.9) may be ensured by suitable normalization of the vector {hi(t), X2(t), ha(t)}. 

The results of the computations will be illustrated for a model with the following parameters: 
ll = 2 m,/2 = 0.4 m, ml = 10 kg, m2 = 4 kg; qh0 = Ir/3 and q~20 = 0. The number c is varied. With these 
parameters, the functionA(~2)(1.2) does not vanish for any value of the angle q~2. Consequently, the 
right-hand side of the second equation of (1.4) is a continuously differentiable function of ~2. 

At c = 2.5 "rr s -1, the maximum deviation of the first link is qh(T) = -1.318. The optimal control 
u(t) = q~2(t) is shown in Fig. 2(a) and the corresponding optimal ~l(t) and ~2(t)  are shown in Fig. 2(b). 
As the parameter c increases, the duration of each of the portions with control u( t )  = - c  decreases 
while that of the two portions of singular control increases. If  the parameter c increases without limit, 
the control function u ( t )  approaches infinity in absolute value at the points t = 0 and t = T and is fairly 
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large, but finite, approximately at t = T/2. Throughout the other portions of the motion the control 
varies smoothly and is close to zero. 

Note that if restriction (1.3) on the angular velocity of motion of the second link is dropped, problem 
(1.1)-(1.7) becomes equivalent to the problem considered below--the optimal control of the angle of 
rotation of the second link. 

2. O P T I M A L  C O N T R O L  O F  T H E  A N G L E  O F  R O T A T I O N  O F  T H E  
S E C O N D  L I N K  O F  T H E  P E N D U L U M  

Mathematical model of the motion of the pendulum, assuming that the angle of rotation of the second link 
changes abruptly. Let us assume that the motion of the pendulum, when the position of the second link 
changes abruptly, obeys the law of conservation of angular momentum. We multiply the left- and right- 
hand sides of the expression for the angular momentum (1.1) by dt and write the result as Kdt = A 
(~2)dq~l + B(~2)dq~2. After determining dqOl from this expression, integrating over the time interval from 
t to t + At and letting At --) 0, we obtain 

A% = -k.aAq02 - k4[arctgl~-5 tg q~2 2Atp2/-- arctg(~s tg ~ - ) ]  (2.1) 

k 3 = b__L k 4 = 2k0t ks = ala° ° 
+ al. 

a! al 2 ~  ' -- a! 

Figure 3, for the interval -2~r ~< Aq~ 2 ~< 0, plots Aq~l as a function of Aq~2 for various values of q~2. 
The function Aq~l(Aq~2) (2.1) takes its extremum values at the points where B(q~2 + Aq~2) = 0. Note that 
in the model under consideration B(q~2 + Aq~2) = 0 for qo2 + Aq~ 2 = ----. 1,738 + 2-rrn, n ~ Z. For example, 
at the starting time, when ~2 = 0 function (2.1) reaches a local maximum Aq~l = 0.078 when the second 
link turns abruptly through an angle A~o 2 = -1.738. The next local maximum A~I = 0.121 is obtained 
at Aq~z = -8.021. Note that abrupt rotation of the second link through an angle Aq02 = -2~r implies a 
jump in the angle q~a through Aq~l = 0.043. Analogous computations yield the local maxima of the 
function Aq~I(A~P2) at time t = T. 

Thus, by "fast rotation of the second link" the deviation of the first link at any time t ~ [0, T] (in 
particular, at the initial and final times) may instantaneously be made as large in absolute value as desired. 
Consequently, the problem of global maximization of the deviation of the first link by controlling the 
angle of rotation of the second link over a single swinging half-cycle is degenerate (multi-extremal). 
However, for the practical construction of almost-optimal controls, we are also interested in the 
pendulum motions over the time interval 0 ~< t ~ T in which the deviation of the first link reaches a 
local maximum at t = T. In what follows, we shall call these motions local extremals or simply extremals. 

2O 
~ 

e~2~ - ~  ~ o 

Fig. 3. 
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Naturally, they must satisfy appropriate necessary conditions of optimality. 
Note that the jump components of the extremals at t = 0, which ensure that the first link will experience 

locally maximum deviations when the control extends over the whole interval of motion 0 ~< t <~ T, do 
not coincide with the local maxima of the function A~ol(Atp2 ) (2.1) at t = 0. 

Formulation of Problem 2. For the system of differential equations consisting of the first two equations 
of (1.4), with initial conditions (1.5), it is required to construct a control ~2(t) which, at the time t = T 
when the angular momentum first vanishes for t > 0 (1.6), imparts to the first link of the pendulum the 
maximum deviation from the vertical (1.7). 

It is assumed that, as in problem (1.1)-(1.7), such a time t = T exists. 
Note that in Problem 2 the fight-hand sides of the differential equations of motion involve both the 

control function q~2(t) itself and its derivative ~o2(t)[7 ]. 

Necessary conditions for an extremum. We will write the functional of the problem as 

T 
J = ~ ~'l (/~" - kl sin tp I - k 2 sin(tp I + ~ 2 ) ) d t  + 

0 

! (  K~-c(tP2)(P21dt-gotPl(T)+glK(T) (2.2) + ~'2 tPl A(t~2) 

where go and gl are as yet undetermined constants. 
The variation of the functional may be expressed in the form 

T. T. 
5J = ~, (T)8K(T) - ~, (0)Sk(0)- ~ ~qSKdt + k 2 (T)&p t (T) - Z,2(0)8~p, (0) - ~ ~,2~Pldt + 

0 o 

r ! ( 8 K  Kalsincp2~p2)dt+ 
+~,I(-M(cPl,cP2)ScPl -k~cos(fPl +¢P2)~P2) dr+ ~'2 A( f P2 )  [A(q~2)]2 

o 

T. 
+~,2(T)C(cp2(T))ScP2(T ) - ~,2 (0)C(cP2 (0))g:xp2 (0) - ~ 7~2C(q)2 )5cP2dt - go~pt (T) + g, fK(T) + o 
+~3 (T)([~(T) - k, sin ~oj (T) - k a sin(q h (T) + q~2 (T)))ST + 

+~.2(T)((0t(T) A(tp2(T))K(T) ÷C(¢2(T)~2(T))~T_go~,(T~T + g,k(T)a T (2.3) 

Necessary conditions for an extremum will be derived from the condition BI = 0. In the process, 
we will compare them to the corresponding necessary conditions for an extremum in problems 
(1.1)-(1.7). 

Equating the coefficients of ~K and ~cp 1 in the integral terms of (2.3) to zero, we find the conjugate 
system of equations. It is identical with the first two equations of the conjugate system (1.8). 

Equating the coefficient of ~T to zero in the terminal terms of (2.3), we have 

~ (T)(~, 2 (T) - g0) + k(T)(~1 (T) + gl ) = 0 

Since in the general case q~1(T) # 0 and K(T) # 0, this implies the following boundary conditions for 
the conjugate variables 

3,1(T) = - gl, Z, 2 (T) = go (2.4) 

Equating the coefficient of ~q0 2 in the integral terms of (2.3) to zero, we obtain 

a 1K sin 9 2  ~'2 = 0 
-~2C(~2)-k2~ ' l  c°s(t~l +~2)  [A(~2)]2 

After substituting the right-hand side of the second equation of (1.8) for hE, we obtain an equation 
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for the control ~2(t) which is identical with the condition H1 = 0 (1.11). Thus, in the optimal control 
of the angle q~2 the switching function H1 must vanish over the whole interval of motion 0 < t < T, that 
is, the optimal control function must be singular [6] for problem (1.1)-(1.7). 

The transversality conditions at t = 0 are 

~.)(0)SK(0) = 0, L2(0)Sq)t(0) = 0 

These conditions will hold due to the first two conditions of (1.5). 
The transversality conditions at t = T are 

(~,I(T)+ gl)~K(T)=O (3,2(T)-go)&Pt(T)=O 

They are satisfied by virtue of (2.4). 
We now consider the terms 

~'2 (T)C(tP2 (T))~2 (T) - ~'2 (0)C(¢P2 (0))~2 (0) 

It follows from the third condition of (1.5) that ~¢P2(0) = 0. Consequently, C(¢p2(0)) does not have 
to vanish in the general case. 

The value of q~2(T) is not fixed, and therefore 8q~E(T ) # 0. By (2.4), X2(T) # 0. Consequently, at the 
final point it must be true that C(q~2(T)) = 0 or 

B(tp2(T)) = 0 (2.5) 

Note that this condition, together with (1.1) and (1.6), implies the equality qh(T) = 0. 
Since the time of motion T is not fixed and as a result ~T # 0, equating the coefficient of 8T in the 

integral terms of (2.3) to zero, we obtain a condition for transversality with respect to time, which, in 
view of (2.5), is identical with the fourth condition of (1.9). 

Thus, the necessary optimum conditions (2.4) and (2.5), together with the previously mentioned 
necessary conditions for an extremum of Problem 1, determine the boundary-value problem of the 
maximum principle for Problem 2. 

An algorithm for constructing extremals of the problem. Computational results. Based on an analysis of 
the results of solving problem (1.1)-(1.7), we may assume that the optimal motions of the system consist 
of jumps at times t = 0 and t = T (not uniquely defined) and a portion of continuous control over the 
interval 0 + 0 < t < T -  0 (uniquely defined). In practice the extremals with bounded jumps at t = 0 
and t = T are of particular interest. 

Extremals solving the boundary-value problem were constructed in two stages. At the first stage an 
approximate estimate was found for the parameters h2(0) and T. At the second stage a two-parametric 
boundary-value problem with parameters h2(0) and Twas solved and an extremal satisfying the necessary 
conditions for an extremum was constructed. 

We will describe the algorithm used at the first stage to solve the boundary-value problem. 
1.1. At time t = 0, vary the angle q~2 by a jump to such a value that, taking (2.1) into account, the 

condition/-/1 = 0 (1.11) holds. (The jump of least absolute value is A~2 = 0 -0.191. In that case the 
angle O1 is instantaneously increased to A~I = 0.013.) 

1.2. Fix hi (0) and some value of the parameter h2(0). 
1.3. Integrate the first two equations of (1.4) and the first two equations of (1.8), with a control u(t), 

computed from (1.12). Condition (1.6) will be used to determine an approximation for the final time 
of the motion t = T. 

1.4. Successively implementing steps 1.2 ° and 1.3 °, construct qh(T) as a function of the single parameter 
x2(0). 

1.5. Varying h2(0) and successively implementing steps 1.2-1.4, find max ~pl(T). 
This algorithm yields estimates for the parameters h2(0) and T, which will be used as first approxi- 

mations in the second stage of the solution of the boundary-value problem. 
We now describe the algorithm used in the second stage of the solution of the boundary-value problem. 
2.1. Implement step 1.1 of the previously described algorithm. 
2.2. Fix hi(0) = 1 and the first approximation of the parameters h2(0) and T. 
2.3. Integrate the first two equations of (1.4) and the first two equations of (1.8) with control u(t) 

computed from (1.12). 
2.4. Vary the values of the parameters h2(0) and T and successively implement steps 1.2-2.3 until 

condition (1.6) and the third condition of (1.9) are met. 
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2.5. At time t = T change the angle ~2 abruptly to such a value that the necessary condition (2.5) 
holds• (The jump of least absolute value is A~2 = - 1.404. In that case the angle qh is instantaneously 
increased in absolute value by I Aq~l I = 0.055.) 

The iterative process just described for constructing extremals converges in 5-10 iterations. 
Incidentally, the boundary-value problem may also be solved without using the first-stage algo- 
rithm, but then the overall computation time is increased. For example, if one takes the initial 
approximation for k2(0) and T to be the corresponding quantities from the solution of problem 
(1.1)-(1.7) with c = 2.5 ~r s -1, the system of non-linear equations in the second stage may be solved by 
Newton's method with a sufficiently small correcting step in 30-35 iterations. 

Computations showed that the locally maximum deviation of the first link over one swinging half- 
cycle of the pendulum, with the minimum possible jumps at times t = 0 and t = T, amounts to 
q~l(T) = -1.375. Thus, if one drops condition (1.3) in problem (1.1)-(1.7), the maximum deviation of 
the first link over one swinging half-cycle may increase by A~p 1 = 0.057 (using "minimum possible" jumps 
at t = 0 and t = T). The derivative of the optimal control function ~p2(t), as well as the optimal control 
function q~2(t) and the corresponding optimal function q~l(t), are shown in Fig. 4. 

0 

-~-6~" 
Fig. 5. 
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We will now describe the special features of the structure of the extremals in this problem. Each 
extremal consists of three characteristic portions: 0 ~< t ~< 0 + 0, 0 + 0 ~< t ~< T - 0, T -  0 ~ t ~< T. In 
the first and third portions the angles ~02 and q~l change abruptly, while in the second portion they are 
continuous. At t = 0 the jump in q~2 is such that, taking (2.1) into account, the condition//1 =0 (1.11) 
holds at t = 0 + 0. The function H1 = HI(Aq~2) (1.11) at t = 0 + 0 is shown in Fig. 5. The jump size is 
clearly not uniquely defined. Locally optimal jumps at t = 0 and the corresponding local extremals of 
the deviation q01(T- 0) for various initial jumps are listed below (the optimal control over the interval 
0 + 0 ~< t ~< T -  0 is uniquely defined if one uses (1.4), (1.8) and (1.12)). 

Aq, 2 -0.191 ---6.456 -12.72 I 
Atpl 0.013 0.054 0.095 
tp j (T-  0) - I .319  - I .364  -1.474 

Obviously, the local maximum points for Aq~ 2 differ from one another approximately by an angle of 2¢r. 
The slight violation of periodicity is due to the fact that at t = 0 the angle q~1 varies abruptly according 
to (2.1). 

Note that not all the zeros of the function shown in Fig. 5 correspond to extremals of the problem. 
The only locally optimal jumps are those for which the moment of inertia of the two-link pendulum 
instantaneously comes sufficiently near the maximum possible, that is, AqD 2 = --2,rrn, n ~ N. In addition, 
note that these locally optimal jumps do not coincide with the local maxima of the function A~I(Aq~2) 
shown in Fig. 3. 

If the angle q~2 is abruptly changed at t = 0 by a sufficiently large amount, it may turn out that the 
angle ~1 jumps to a value of the order of ~r. In that case this problem--the optimal control of the motion 
of a two-link pendulum over one swinging half-cycle--becomes meaningless, the pendulum begins to 
perform rotating motions, which are not being considered here. 

At t = T -  0 the angle ¢2 jumps to value such that the necessary condition (2.5) for an extremum is 
satisfied at t = T. The size of the locally optimal jump in q~2 is not uniquely defined. The following table 
lists locally optimal jumps at t = T -  0 and the corresponding locally optimal deviations of the first link 
over the entire swinging half-cycle 

Aq~ 2 - 1.404 -7.687 - I  3.970 
AtPl -0.055 -0.099 -0.140 
~pt (7) -1.375 - 1.419 - 1.459 

These results correspond to a jump Aq~ 2 = -0.191 at time t = 0. Note that the points of the locally 
maximum jumps hq~2 at t = T -  0 differ from one another by an angle of 2"tr. 

Note also that not all roots Aq~2 of the equation B(q~2 + A~2) = 0 at a time t = T ensure maximum 
deviation of the first link. The only locally maximum roots are those for which the function (2.1) reaches 
a local minimum. At t = Tthe local minima of the function (2.1) (Fig. 3) coincide with the locally optimal 
jumps in q~2. 

Thus, if no restrictions are imposed on the size of the jump in the angle q~2 at time t = T - 0, the 
deviation of the first link at t = T may be made as large as desired without violating the necessary 
conditions for an extremum. 

The main qualitative result is that, if no restrictions are imposed on the instantaneous jumps at 
t = 0 and t = T, one can construct an infinite set of local extrema which solve the problem and satisfy 
the necessary conditions for an extremum. If  a restriction is imposed on the size of the jump, only a 
finite number of extremals remain. If sufficiently strong restrictions are imposed on the size of the 
instantaneous jumps (e.g. I Aq~21 < ~/2 at t = 0 and t = T), then the optimal control problem under 
consideration will have a unique solution, which is the limit obtained from problem (1.1)-(1.7) when 
c = oo (see (1.3)). But if jumps in ~P2 are entirely forbidden (this is equivalent to introducing restriction 
(1.3) on the angular velocity of the second link), the problem becomes equivalent to problem (1.1)-(1.7). 
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